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We study a spline wavelet alternative direction implicit (SW-ADI) algorithm for
solving two-dimensional reaction diffusion equations. This algorithm is based on
a collocation method for PDEs with a specially designed spline wavelet for the
Sobolev spac#i?(l) on a closed interval. By using the tensor product nature of
adaptive wavelet meshes, we propose a SW-ADI method for two-dimensional prob-
lems. The proposed SW-ADI method is an efficient time-dependent adaptive method
with second-order accuracy for solutions with localized phenomena, such as in flame
propagations. Issues like new boundary wavelets for more accurate boundary condi-
tions, adaptive strategy for two-dimensional meshes, data structure and storage and
implementation details, and numerical results will be discussedss Academic Press

1. INTRODUCTION

Wavelets have been applied recently to obtain representations of integral and differen
operators in many physical problems. To list a few, the pioneering work by Begtlah
[1] has started several works in deriving sparse matrix representations of integral operat
with Daubechies’ wavelet basis [2] or wavelet-like basis [3]. This is made possible becau
of the vanishing moment properties of the basis functions used in the representations .
the low rank property of the integral kernels. In the area of differential operators, most of tl
attempts of using wavelets is to generate an adaptive meshing structure (select a partia
of full wavelet basis functions) upon which differential operations can be carried out, tht
reducing the amount of mesh points (number of wavelet basis functions) needed to resc
detailed structures in the solutions of PDEs [4-8]. This is made possible, of course,
the localization properties of the wavelet basis both in space (like traditional finite eleme
basis functions) and in frequency (like the Fourier basis functions). Meanwhile, Harte
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has introduced a general multiresolution algorithm as a data compression method for
solutions of conservation laws [15].

In this paper, we will further our studies of using a specially designed spline wavelet bas
[4]in H2(1) on a closed intervdlfor the resolution of the initial boundary value problems,
in this case, two-dimensional reaction diffusion equations. There are two equally importa
issues in the design of adaptive methods for the efficient solution of time-dependent PDI
First, the ease of generating locally refined adaptive meshes to resolve the gradient:
solutions; second, an efficient solver for the resulting algebraic systems (linear or nonlines
The second issue demands more attention as it is the bottleneck to achieve efficiency
a time-dependent solver of many CFD problems. In most cases, the diffusive terms (1
second derivative terms) in the PDEs are treated implicitly to avoid the prohibitive time ste
restriction, thus producing an algebraic system to be inverted each time step. Preconditio
iterative methods or multigrid methods are the most used ways for the solution of su
a system. The wavelet methods turn out to be a good candidate to address both iss
We are proposing to combine the adaptive spline wavelet methods [4] and the traditior
alternative direction implicit method to form an efficient adaptive SW-ADI method for
reaction diffusion problems where solutions often demonstrate large local variations, su
as the dramatic change of temperature profiles across reaction zones. An important fea
of the two-dimensional SW-ADI method is its ability to produce localized adaptive mes
in a tensor product fashion. Because of the compactness of the wavelet basis functions,
will be able to produce local meshes of finite element type, but on a tensor product me
structure. As a result of this unique property, we will be able to combine the ADI approac
with the wavelet methods to obtain an efficient second-order time-marching solver f
time-dependent problems as long as a factorization of the differential operator is availak

The paper is organized into the following sections. In Section 2, we introduce the reactio
diffusion equations to be studied in this paper. In Section 3, we will reintroduce the wavel
methods proposed in [4], but with significant modifications on the definitions of bound
ary wavelets. Additional boundary wavelets are introduced to handle more accurately t
boundary conditions of the PDEs without using derivative information of the solutions
Derivative matrices for the differential operators based on the new wavelet functions will k
given. Also, a fastliscrete wavelet transforporiginally proposed in [4], between function
values and wavelet interpolant expansion coefficients will be modified accordingly. In Se
tion 4, we discuss the SW-ADI method which combines spline wavelet methods and Al
schemes. In Section 5, we will provide the general algorithm of the SW-ADI methods ar
the data structure used in their implementation. In Section 6, we will test the second-orc
accuracy of the SW-ADI methods for two types of SW-ADI methods, depending on th
order of the spline spaces. Also, we will provide numerical results of flame propagations
a channel. In Section 7, we draw some conclusion of this work.

2. REACTION-DIFFUSION EQUATIONS

To investigate the behavior of the numerical algorithm presented in this paper, we w
study two-dimensional reaction—diffusion problems. And for the sake of simplicity, we
restrict ourselves to the case of a flame propagation in a gaseous medium in which a sir
one-step chemical reaction takes place; more complex chemistry and three-dimensic
case will be considered in our future studies.
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Using Lagrangian space coordinates and normalized varidbéeslY for the tempera-
ture and the mass fraction of the reaction [9], we have the governing equations of the fla
as

T
M AT +ST.Y)
N av @)
— =——gT,Y),
ot Le S( )
where the normalized reaction reén given by
B pL-T)
S=—Y _— . 2.2
2t P\ "1 (2:2)

The positive parametetse, 8, anda denote the Lewis number of the reaction, the reduced
activation energy of the reaction, and a nondimensional heat-release parameter, respecti
The solutionT (X, y, t) andY (X, y, t) of (2.1) is sought in a regiof? x [0, T] with suitable
boundary conditions 082 x [0, T], whereS2 is a closed region ifR?, 92 is the boundary
of @, and [Q T]is the time interval withO<t < T.

Equations (2.1) are associated to initial data

T, y,0 =ToX,y), Y0 =Yo(X,Y), (2.3)

and boundary conditions alongdirection

0 (fresh mixtur

T, y,t) = {1 Eburnt) Q} X € 09; (2.4a)
1 (fresh mixtur

Y.y, t) = {o Ebumo e} X € 99 (2.4b)

and periodic boundary conditions will be assumed algsirection.

3. WAVELET APPROXIMATIONS

In this section, we discuss wavelet approximation to one-dimensional problems, whi
can be extended to two-dimensional or three-dimensional problems in a tensor prod
fashion. We first mention the main results of wavelet methods for initial-boundary valu
problems of the PDEs in [4]. Furthermore, a set of new “boundary wavelets” are construct
here in order to approximate general boundary conditions and improve the accuracy
derivative approximation with thenbt-a-knot end conditions [10].

3.1. Wavelet Spaces and Function Approximation

Let | denote a close interval [@] and letH?(1) and H02(I) denote the following two
Sobolev spaces with finite2-norm up to the second derivatives, i.e.,

H2() = {f),x e 1][ V], < +00,i =0,1,2}, (3.1)

HZ(1) = {f(x) € H?(1)| f(0) = f(L) = f'(0) = f'(L) = 0}. (3.2)
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HZ(1) is a Hilbert space [11] equipped with the following inner product

(o) = [ /009" 00 dx (39
thus,
NN =~/ (f, ) (3.4)
provides a norm foHZ(1).

In [4] we have introduced a basis function set of subspactr a given integed > 0
and a fixed interval = [0, L] with, for example, integet. > 4 as

Vi=VooWod W1 &Wo D --- D W, (3.5)

where
Vo = spargok(X),0 <k <L —3}, (3.6)
Wi = spanyjk(x),-1<k<nj -2 n; =21}, 0<j=<], (3.7)

where all the basis functions are defined in [4].

It is shown in [4] that any functiorf (x) € HZ(1) can be approximated as closely as
possible by a functiorf; (x) € V; for a sufficiently largel, and f;(x) has a unique ortho-
gonal decomposition under inner product (3.3)

fax)=fo+Qo+01+ - +0ds—2+0y, (3.8)
wherefg e Vo, g e W;,0< j < J.

In this paper, we will present two new boundary wavelet functions in order to implemer
thenot-a-knotboundary condition. They are defined as

56
Ypo(X) = —9—9(’\00.—1(X) + 1o _2(X)), (3.9)
182 1
Yp1(X) = 181 <1/f(X) + E(Ilfo,—l(x) + Wo.—z(X))> , (3.10)
where
3 12 3
V(X)) = —?w(ZX) + 7<p(2x -1 - $<o(2x - 2), (3.11)

andyg, —1(X) =¥ (X + 1), Yo—2(X) = ¥ (X + 2) and we also consider different collocation
points from those proposed in [4] in order to reflect the extra boundary wavelet function:

First, we redefine the scaling spadgand the wavelet spac#¥;. For anyj, k € Z, we
have

pok(X) =p(x—k), O0<k<L-4 (3.12)

©0,-3(X) = n1(X), @0,—2(X) = n2(X), (3.13)
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®0,—1(X) = @p(X), @o,L-3(X) = @p(L —X),

poL—2(X) = m2(L —X),  @oL-1(X) =ni(L —X),

where
nx) = (1-x)3,
7 4 1
n2(X) = 2%, — 3x2 + 6x?; - 3= 13 + s - 2)3,
1 4
o(x) = 6;( )( Dix— )3,
83, 1 s 3 5.
Pp(X) = X4 12x + 5 (x DI - Z(X_2)+’
and
¥k = ¥ (2x k), j>0k=12...,n -4,
¥i—1(X) = Ypo(2/x), ¥ 0(X) = Yp1(2/x),

Vin-300 = Y12 (L = X)), ¥jn—2(0) = o2 (L — X)),

wheren; = 2/ L. The new spaceg, andW; are

= spafi¢ox, —3 <k <L —1},

W; = sparfy(x), —1<k=<n —2n; =2/L}, 0<j=<J.
It can be checked that diig = L 4+ 3, dimW; = n;. The collocation points

1 1
X(‘l)z{0,5,1,2,...,L—1,L—§ } XTI for v,

are chosen and

x() — 1 3 5 2k+3 5 3
T ) 2427 2+17 2j+17 T TojHl T T T oj+l’ T pj+1”

= {XKJ)}k_—l

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)
(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

|

(3.24)

for Wj, j > 0, and the number of collocation points¥ is L + 3 and that inW; is nj,
which both match the dimensions of spatgsandW;, j > 0. The collocation points for

each level XV, X©@ X® X@ X® are shown in Fig. 1.

The modification on the boundary scaling function and wavelet functions will partiall
destroy the orthogonality of boundary scaling functions (3.13) to (3.15) with respect 1
wavelet spaces. This is because we have included the nonhomogeneity in those boun
functions. This approach is equivalent to applying an orthogonal wavelet decompositi
to a function minus the boundary nhonhomogeneity by subtracting a local boundary ter

Such an approach has been discussed in [4]. Moreover, it can still be proven thairthe

vanishing propertyn [4] holds, i.e., forj > i

1ﬂj.,|<(X|(i)) = i,

(3.25)
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FIG. 1. Collocation point distributions for different space levels.

wherej >0, -1 <k<n—-2,andl<|l <L-1lifi=-L-1<I|<nm-2if
i > 0. Thepoint vanishing propertyf (3.25) assures thai; «(x)} forms a hierarchical
basis function over the collocation points in (3.23)—(3.24).

Finally, for any functionf (x) € H?(1), we have an approximate functidi (x) in the
form of

fa)=fo+g+01+ - +0ds-1+9y, (3.26)

where fo € Vo, gj € W;,0 < j < J, Vo andW; are the redefined scaling and wavelet
spaces in (3.21) and (3.22).

3.2. Function Expansions and Approximation of Derivatives

Assuming that a functiofi (x) € H2(1), we write its wavelet interpolarft; (x) = P; f (X)
and approximate derivativels® (x), k = 1, 2 as

J
f300) = Pyf o0 = fL100+ Y (%) (3.27)
j=0
and
J
15900 = 1900+ 19, (3.28)
j=0
where
L-1 .
100 =Y 1ok € Vo (3.29)
k=-3
and
nj—2
fi00=> fpx0ew, 0<j=<J (3.30)
k=—1

Let us denote the expansion coefficients of (3.27) or (3.29) and (3.30) in a vector form

fy= (FV O FY 0T (331)
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where

A(_l) A A ~ ~ ~
f =(fy st of oo f o fgisfaiof g )T, (3.32)

fO=(f, 1. Fi0. 0 fin 2T, 0<j<d. (3.33)

The coefficientsi?J will be determined by satisfying interpolation conditions at the collo-
cation points defined in (3.23)—(3.24), i.e.,

Pif(x¢ )= f(x V)= fiY, —3<k<L-1, (3.34)

Pyf(x))) = f(x)) = £, —-l1<k<n;-—2 (3.35)

Denoting the values of (x) at collocation points by

fy=(FC0, £O @ fO)T (3.36)

where
Y o Lo A SURUNR e O o O 1 A (3.37)
t0 = (t9 1P )T 0sj<, (3.38)

and using the point-vanishing property of (3.25), we obtain

7Y _gipen (3:39)
FO _ ML FD — (1 )], (3.40)

where(Pj_; )1 = {Pj_lf(x,ﬁj))}ﬂ":__zl, B andM;j are the(L + 3) x (L + 3), andn; x n;

transform matrices, respectively:

1 0 0 1
1019 25 1 0
8 48 96 48

107 1
6 12 6
102 1
6 3 6
e o o
1 2 1
B = 1z 1 (3.41)
e o o
102 1
6 3 6
107 1
6 12 6
0 1 25 19 1
48 96 48 8
i 0 0 1]
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1 =
s L -4 0
1 1 4
k1 -4
M = ° . (3.42)
-4 1 -4
-4 1 -&
0 -4 1 5%
i w1

Then, thediscrete wavelet transforfDWT) which maps fromf; to f 5 will have operation
countO(N log N) asin [4], whereN = 29+1L + 3 is the total number of collocation points.

The projection matrix intd/; is written, assuming that the whole collocation point
setx)) for W; is being used. A differeni; will be defined in Subsection 3.4 when only
part ofx1) is used in the approximation as a result of adaptive meshing.

3.3. Derivative Matrices

The differential operation of wavelet approximation to a function, given by its wavele
expansion of (3.28), can also be represented by a derivative matrBecause of the
multiresolution structure of spac¥®$, namelyV; C Vi1, andVy; = Vo®Wo @ - - - & Wj,
we can assume thdt= 0 and that the wavelet interpolatidg(x) = Py f (x) for the function
f (x) € H?(l) can be written as the linear combination of only scaling functioviin

L-3
fox) = Y Fran(). (3.43)
k=-3
Let {Xo, X1, ..., Xn} be the total collocation point which is the union of partial sets of

collocation pointx-? andx’, 0 < j < J, in an adaptive situation, afg = x; — X_1,
1 < i < N; then the derivative matriceB{? and D" for second and first derivatives,
respectively, are given as

” 2h
u”(1) u(d) h1+f12 0
. B . 0 :
=TT +u(0) +uN) | g :
” 2hn-1
u’(N —1) u(N —1) 0 Pn_1+hn
(3.44a)
where
r hi(hi+2hy)  hi(ho—hy) b
f? h 3h h
+
woomh oy 0
o o °
hi hithiya hig
Ti= 3 b bo
. °
0 hn-2  hnoothnoa hn_1
6 3 6
hn(hn-i—hn)  hn(hn+2hn-1)
L 3 3 4 (N—D)x(N-1)

(3.44b)
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-2 h12<r|}12
LG R
T, = ° ° (3.44C)
e et we) R
hNZTihN —2

(N=1)x(N—1)

h1 + hy hy }
u”’(0) = Uil — — (2 ,
0 h [ D T (2

(3.44d)
hn-1+ hy [ hn ]
UN)= ——|U(IN=-1) — ——— U’ (N =2)].
(N) hn-1 ( hn-1+ hy )
D(32) — T1—1T2’ (3446)
if homogeneous boundary conditions, i) = u(N) = 0 are used, and
u’'(0) u(0) u(0)
= H;'H, = DY : (3.45a)
u'(N) u(N) u(N)
where
e 1 -
M2 0
A2 2 2
Hy = .+ (3.45b)
Aj Hi
[ ) [ ]
0 AN—1 2 pnN-1
L TNt (nynensn
[y & a3 1
C1 d]_ €1 0
[ ) [ ) [ ]
= 3.45
HZ G di 5 ( C)
[ ] [ ) [
0 Cn—1 On-1 en-1
L bs by by | (N+1)x (N+1)
where
A hi+1

— , =1— A 3.46a
hi + hia Mi i ( )
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2 2 2 2
a = —Ay + ,U«1’ a = iy 1 (p) A= (1) ’ (3.46b)
hl hl h2 h2
2+ An— An_1)? 2+ An- An_1)?
b1=N«N—1&, b2=( N-1) _MN—lg, b3=—( N-1) , (3.46¢)
hN thl hN thl
3 3L
o =-M oM 4 _c_e. 1<i<N-1 (3.460)
hi hi+1

As pointed out above, theot-a-knotconditions are used in order to obtain the best inter-
polating results near the boundaries. Similar derivative matrices for spline-based wavel
have been considered in [6], however, with different treatments for the boundaries. To obt
higher accuracy for derivatives, we can also replélé and Déz) by the derivative matri-
cesD andD?, produced by a quintic spline interpolation with the not-a-knot boundary
treatment. We leave the derivation of the derivative matrizgsand Dé2> to the Appendix.

3.4. One-Dimensional Data Structure and Adaptive Procedure

Inordertoimplement an adaptive procedure, itis very important to design an efficient de
structure. We consider the data structure for the function valyés (3.36) at collocation
points. The same data structure will be used for the wavelet coeffidigofy3.31). Denote

fy={fCD fO fD O

) = {fk(j)}, 1 < k < nj, the values of the unknown function on leviel

f; will be stored as a 1D array, together with the following auxiliary vectors,
pointer(j)—pointer of first element of (),

nptg j)—number of collocation points used Wj, nptgj) = n;,

index1 : nj)—collocation point location indices.

In expression (3.27)f;(x) is computed using the whole set of collocation points
xh = (%}, 0< j < J. As we know, most of wavelet expansion coefficiehys for large
j can be ignored within a given toleraneeso we can dynamically adjust the number
and location of the collocation points used in the wavelet expansion and reduce the c
of the scheme while providing enough resolution in the region where the solution varit
significantly.

We now describe the procedure of deleting collocation pointse e be a prescribed
tolerance and lef > 0,

_ o m_loge
I_I(s)_m|n<2, loga

>, a =7+ +/192= 13.928(see [4).
Stepl. First we locate the range of the index
Ky, 1), s (Ko 1), m=m(j, e), (3.47)
such that

|'Fj!k|Zg’ Kk <k<l;i=1,....m (3.48)
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Step2. We keepf, in (3.27) forki <k<li,ki=kl =1 = 3,li=l/ +1 + 3,i =
1, ..., m; namely, we reducd;(x) as
L-1 . .
300~ > F_1d00 + D F e, (3.49)
k=-3 kEKJ

whereK; = Ui -mlki. li].
Step3. The new collocation points and wavelet coefficients will be

(x, f —3<ksL-1 if j=-LkekK;, ifj=0  (3.50)

The procedure of adding collocation points for higher wavelet spaces is discussed w

the two-dimensional case in Section 5.

Now we discuss the projection matrM; of (3.42) for adaptive meshes. The project

matrix M; for W; will consist of blocks which corresponds to the grouping of inklér
(3.47):

M1
M> 0

M; = . (3.51)

0 Mm—1

Mm_

To ensure the block structure bfj, we assume that the spacing between the index group
[ki, lil, 1 < i < m, is bigger than 3, so that wavelet basis functions from two different

index groups will not overlap. For2 i <m-—1,

- 1 _%4 -
1 1
14 1 0
1 1
—u 1 i
M; = (3.52)
[ ) [ ) [ )
1 1
—u 1 5
1 1
0 T 14 1 T 14
1
- 1

- “(i—ki+Dx(i—ki+1)

Fori = 1, the exact form oM, will depend on which boundary functiong _1(x) and
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¥j,0(X) are included in the indegky, I1); i.e.,

_ 9 _
1
4 1
o 1 1 0
13 1
—1 1 T
M; = -5 1 -4 (3.53a)
[ ) [ ) [ )
1 1
0 -2 1 -4
_1
L 14 4 (1—ki+) x(I1—kg+1)
if ¥j,—1(x) andyr; o(x) are included in the indegky, 11);
- 1 -
1 -4
13 1
—11 1 T 0
1 1
T 14 1 14
1 1
My = - 1 i
[ ) [ ) [ )
1 1
1
-= 1
- 14 - (|1—k1+l)><(|1—k1+l)
(3.53b)
if only v o(x) is included;
M is the same as (3.52) if no boundary wavelet is included, (3.53c
and similarly fori = m, considering the indegknm, I 1),
- 1 -
1 —-u
1 1
-2 1 -4 0
1 1
T 14 1 T 14
[ ) [ ) [ )
Mm = 1q 1 (3.54a)
14 14
1 13
2 1 1
1 4
0 -5 1 &
9
365 1

L = (Im—Km+D)x (Im—kn+1)
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if ¥j.n,—3(X) andysj n, —2(x) are included in the indegm, Im);

- 1 -
1 -4
1 1
- 1 -4 0
1 1
—u 1 i
[ ] [ ] [ ]
Mm = 1 1
—u 1 -
1 1
T 12 1 T 12
1 13
0 —u 1 i
1
- 1
L 14 3 (K1) x (g — Ko +1)
(3.54b)
if only vj n;—3(X) is included;
Mn is the same as (3.52) if no boundary wavelet is included. (3.54c

4. SW-ADI METHODS

To achieve unconditional stability, one may resort to a fully implicit method for time
discretization of (2.1). Unfortunately, this will result in a system of algebraic equations th:
is sparse, but which may require a large amount of computational effort. One remedy is
use ADI methods, which only require solving one-dimensional implicit problems for eac
time step.

In this section, we discuss the SW-ADI schemes and the corresponding boundary c
ditions which will be used in our numerical simulations for two-dimensional reaction-
diffusion problems. Based on the ADI formulae, SW-ADI schemes with nonuniform meshe
are developed, which is ofimportance inimplementing wavelet approximation and the ads
tive procedure.

Consider the heat conduction equation

2 2
e g—y‘; (4.2)
in the region® = © x [0, T], where2 = {(x, y; 0 < x, y < 1} with the initial condition

ux,y,0 = f(x,y), XYy e, (4.2)
and boundary condition

ux,y,t) =gx,y,t), vy, t)eoa x[0,T], (4.3)

whered 2 is the boundary of regiof®.

SW-ADI methods are now introduced, first, with respect to Eq. (4.1) for the heat cor
duction operatob = D2 + Df,. The exact difference approximation of Eq. (4.1), provided
that D is independent of timg, is given by

uit = expAatDyuf, (4.4)

At At
exp<_7 (074 Di))u.”}‘nl _ exp(7 (D2 + D§)>unm, .5)
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where(l, m) stands for the spatial position ¢f, y), n represents the temporal level, and

1 1 1 1 1 1
2 _ 2 4 6 2 _ 2 4 6
D = (ax——l 5X+—5X...>, D} =1 (ay——l 5y+—5y...>, (4.6)

wheres?2 and8§ are approximate difference operators with meshlsimssecond derivatives
D2 and D§ respectively. In the following" will be written in short foru' , if there is no

confusion about the notations.
Substituting (4.6) into (4.5), we have up to second-order difference,

erp( 52 exn( 535 ot = enp( o3 . @)

wherer = At/h? and, using the Taylor expansion, it becomes

(1 — %af) (1 - %35) untl = <1+ %55) <1+ %55) u" + O(At® + Ath?), (4.8)

which is theCrank—Nicolsor{C-N) formula if O(At® + Ath?) is dropped.

4.1. SW-ADI Schemes

In this section, we will consider several well-known ADI schemes to be used with ou
spline wavelet method to form the SW-ADI schemes. From formula (4.8), we can obtain ti
following ADI schemes and the details of the ADI schemes used here can be found in [1:

Peaceman-Randford (P.R) schemin the first step advancing fromy to t, + At/2,
an implicit difference is used fai?u/dx? and an explicit difference is used f6fu/ay?.
In the second step advancing frap+ At/2 tot,,1, a reversed procedure is used. The
difference approximation to Eq. (4.1) can be expressed in the form of derivative matrices
Subsection 3.3 and the Appendix,

At . At

|:1 — 7 D§:| Un+1 = |:1 + 7 D§:| Un, (49&)
At At «

[1 - Dﬂ untl = [1 + > Df} umtt, (4.9b)

whereu"*! is an intermediate value. Itis clear that (4.9) is the same as formula (4.8) withi
the accuracyD(At3 + Ath?).

D’Yaknov (D.) scheme.

At . At At

{1 - Df} Ut = [1 + = Df} {1 + > D§] u", (4.10a)
At *

[1 -5 Dﬂ utt =yt (4.10b)

whereu1" is an intermediate value.
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In (4.9)~(4.10), the derivative matricé3;, D7 are computed by the methods given in
Section 3 or the Appendix. It is known from the generation of the derivative matrices th
nonuniform wavelet meshes can be used.

4.2. Initial and Boundary Conditions

The approximate solution™ must satisfy the initial and boundary conditions (4.2) and
(4.3),i.e.,

(i) u®= f, atall mesh points,

(i) U"=9g",n=0,1,..., N, onthe boundary<.

The intermediate value"!" introduced in each ADI scheme above is not necessarily ar
approximation to the solution at any time levels. As a result, particularly with the highe
order methods, the boundary values at the intermediate level must be obtained, if possi
in terms of the boundary values @tandt,,;. The following formulae [12] giveu"*?
explicitly in terms of the central difference gf*! andg" with respect toy from (4.3):

.1 At 1 At

Ul — 5 {1 _ 7D§] g™+ > [1+ ?Dﬂ g" (P.R) (4.12)
. At

untt = [1— > Dﬂ g™t (D). (4.12)

If the boundary conditions are independent of the time, the formulae giWing on the
boundaryd 2 reduce to

"t =g (P.R) (4.13)
umtt = [1— %Dﬂ g (D). (4.14)

4.3. ADI Scheme with Source Term and/or Mixed Space Derivative

Considering the equation

au  9%u  d«
—_— = — 4 — X, 1), 4.15
st =t v + S(X, 1) (4.15)

we have the second-order ADI scheme [12]

At . At At
[1 -5 Df} Uttt — [1 +5 Df,} u" + 7s"+1/2, (4.16a)
At At . At
[1 - Dﬂ umtt = [1 +5 Di} TUREE 7s”+1/2, (4.16b)
or
At . At At
{1 - Df] Ut = [1+ > Dﬂ u + 7s”, (4.17a)

At At . At
[1 - D;‘,} untt = [1 += Df} umtt 4 7s”*l, (4.17b)
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where S" = S(x, t,), "2 = S(x, t, + At/2), and S™! = S(X, th41). It is worthwhile
pointing out that if the source term is dependent on the unknown funcdtiave need
to use a Strang-type splitting scheme [13] with one-step time integrating schemes, -
example, a fourth-order Runge—Kutta scheme for the source term.

For an equation with mixed space derivative, i.e.,

au 92u N 9%u +Cazu
ot ax2 Xy ay?

with A> 0,C > 0, B> < AC, (4.18)

we have the ADI scheme as

At . At

[1— 7ADf] utt = {1+ 7ADf + AtCD] + 2AtBDZ | u",  (4.19a)
At . At

{1 -5C D§] U =yt - —-C D" (4.19b)

Here the derivative matricedZ, D7, andD, are computed again by the method given in
Section 3 and the Appendix.

5. ALGORITHMS

We discuss the numerical algorithms used to solve two-dimensional reaction diffusic
problems, including the general procedure of the algorithm, the data structure, and the tv
dimensional adaptive procedure. For the sake of simplicity, we only consider Eq. (4.1), t
initial-boundary conditions (4.2) and (4.3), and the ADI scheme (4.10) in this section. It i
similar to treat other situations of the PDEs and ADI schemes.

5.1. Two-Dimensional Data Structure and Adaptive Procedure

Based on the one-dimensional data structure given in Section 3, we now discuss 2D @
structure and consider 2D adaptive procedure in the context of the ADI methods. For t
ADI scheme only one coordinate direction, but all mesh points, will be considered in ea
substep. Therefore, the coordinates of all mesh points and all values of both known &
unknown functions have to be stored in the forms of both, row by row and column b
column, respectively, which is necessary to implement ADI sweeps. For the collocation p
ints on each wavelet spavé’ ® WJ-); the active collocation points used in the computation
will be stored as a sparse matrix in either compressed row storage or compressed colt
storage in a one-dimensional array, namely, for Vgl ® WJ{. We define for eacly-line
(jth column of the sparse matrix):

Given jth columnmesh line along y-direction
lencokj, jx, jy)—length of jth columiy-direction,
ipc(j, jx, jy)—pointer of first mesh on jth column
inr(j, jx, jy)—row indices of jth column.
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and, similarly,
Given ith row(mesh line along x-direction
lenrow(i, jx, jy)—length of ith row(x-direction),
ipr(i, jx, jy)—pointer of first mesh on ith rqw
inc(i, jx, jy)—column indices of ith row.

For example, unknown functiamis written asu, (K, jx, jy) for compressed row storage,
oruc(k, jx, jy) forcompressed column storage and inkexns over all the active points on
the wavelet leve(jy, jy), 0 < jx < J, 0 < jy < Jy. Therefore, with the wavelet parameter
iy, 0 < jy < Jy, orjy, 0 < jx < J given, we calculate the solutiam.(k, jx, jy) or
ur (K, jx, jy) for column by column or row by row along theor x direction. Notice that a
transform between, (k, jx, jy) anduc(k, jx, jy) is also required.

Finally, we describe the procedure for 2D adaptive meshing and refinement.Given ma
mum wavelet leve{Jy, Jy) a uniform approximation ta(x, y) can be obtained by the ten-
sor product of( Vg & Zf::O W) ® Vg ® nyyzo ijy). The typical tensor product space
is WX ® WY and the wavelet coefficients aiig)}"’, 0 < j, < &, 0< jy < J,.

Deleting a collocation point. Given the error tolerance, we will threshold the wavelet
coefficientsiiy;*’ and discard the corresponding collocation paigt”, ") in the fol-
lowing procedure. We apply the one-dimensional adaptive procedure xrcaordinate
and ay-coordinate sweep; namely, for eagitollocation point{y,“y) } we apply the adap-
tive procedure in the spac¥y @ Z]-::O W) along the liney = y,“y) and, repeating the
same procedure for eaghcollocation poim{x,ﬁj*)}, we apply the adaptive procedure in the
space(Vy & Yj’_o W) along the linex = x{”’. A collocation point(x(’, y/') is to
be deleted only if it is being flagged for deletion under the given tolerance during both ¢
x-andy-coordinate sweep.

Adding new collocation point.In most cases, higher level wavelet spi¢g j > Jy, or

ij, j > Jy, will be introduced to create finer meshes where the solution changes rapid
Caution is needed to create new collocation points. As shown in Fig.c2jdénotes old
collocation pointsx denotes new collocation pointsyat= y* during refinements along the
y-direction. Sometimes, we will not have corresponding boundary points along the dome
boundariesgb andcd in Fig. 2) (marked as). This kind of boundary point will be added
after allx- andy-direction mesh refinement. This is necessary when differentiation is to b
done along the& coordinate direction at = y*. In practice, we could include alf5 points

ony = y*.

5.2. General Steps for SW-ADI

For convenience, we use SW-ADI3 to stand for SW-ADI with a cubic spline interpolatiol
and SW-ADI5 for SW-ADI with a quintic spline interpolation. We will consider both of
them in our numerical simulation&iven all initial parameters

(Jx, Jy), wavelet levels irx andy directions,
(Lx, Ly), interval lengths ok andy directions.

Stepl. Generate wavelet mesh using spline wavelet transformation and the proced
given in Subsection 5.1.
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FIG. 2. Adding new collocation pointx).

Store the meshin either compressed xpwr compressed columag storage. Similarly,
ur anduc are the storages for the solutions:
X, Mmesh stored in compressed row storage,
Xe, Mesh stored in compressed column storage,
Ur, solution stored in compressed row storage,
Uc, solution stored in compressed column storage.

Given initial timet = to:
Step2. Solving SW-ADI equations using (4.10), first calculate the right hand side

At
{1+ —Dz] u" = @, (5.1a)
2 Y
At
[1 + 7Df] " = u", (5.1b)
Solve the system fai",
At 5] e e
1- 7DX u =u", in x direction (5.2a)
Solve the system fau"*?,
1- Blp2| 1 _ 0+ iy direction (5.2b)
2 y[U = Y '

Ift <tn,t =t 4 At, repeat the above procedure.
Stop otherwise.

6. NUMERICAL RESULTS

To confirm the second-order accuracy of the algorithms presented in this paper, num
ical simulations of two-dimensional reaction-diffusion system, in a rectangle domain c
Q =[-5, 15] x [0, 2], are performed o®unWorkstationULTRA-1 The computational
accuracy and time for uniform and nonuniform meshes, nonadaptive and adaptive cas
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and different levels of wavelet approximate subspaces are investigated. The comparis
of the present method with a second-order Runge—Kutta method is also provided.

6.1. Numerical Accuracy

We first study the numerical accuracy of the SW-ADI algorithm for the uniform mest
case. Considering the equations

au
(6.1)
ov
— =Av—f
at
in 2, whereA is Laplacian operator; = 1 — u with exact solution
_ _ 5
T { [1—expla(t —xp)]° Xp=>t, 62)
0, Xp < t,
wherex, = x + g sin(wy). Thus, the source term should be
d _
f(x,t) = Eu — Au, (6.3)

wherew, 8, w are given constants.

We use both cubic and quintic spline interpolation for the computation of second deriv
tives. Comparing ADI methods with the second-order Runge—Kutta method, we give tl
results in Tables 1-3 with = 2.0, 8 = 0.2, = 2.0, where SW-ADI5 and SW-ADI3
stand for the quintic and cubic spline interpolations, respectively.

Maximum error in Tables 1-3 is calculated by

Emax = miax{ log |uiappr_ uiexacJ }’

whereu‘appr andul,,..are approximate and exact solutions, respectively. From the Table -
we obtain second-order accuracy for ADI methods with quintic spline interpolations (SV
ADI5) and almost second-order accuracy for ADI methods with cubic spline interpolatior
(SW-ADI3). The Runge—Kutta method also gives results with second-order accuracy, t
requires much more computational time than ADI methods.

Up to now, we find the numerical solution under the conditions of uniform meshes ar
without consideration of the adaptive procedure. A uniform mesh is given in Fig. 3 wit
wavelet level (3, 2).

TABLE 1
Numerical Results for SW-ADI5 Method
Wavelet level
Method (I, Jy) Final timet  Maxerror (log)  Order of accuracy
SW-ADI5 2,1) 0.2 —2.7852
SW-ADI5 3,2 0.2 —3.3505 1.8780

SW-ADI5 (4,3) 0.2 —3.9509 1.9944
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TABLE 2
Numerical Results for SW-ADI3 Method
Wavelet level
Method (., Jy) Finaltimet = Maxerror (log)  Order of accuracy
SW-ADI3 (2,1) 0.2 —0.7680
SW-ADI3 (3,2 0.2 —1.2662 1.6550
SW-ADI3 4, 3) 0.2 —1.8244 1.8543

6.2. Nonuniform Meshes and Adaptive Procedure

To improve computational efficiency, an adaptive procedure isimplemented. As a result
an adaptive procedure, we must numerically solve discrete problems on a nonuniform me
We still consider Eq. (6.1). Numerical experiment indicates that second-order accuracy
the SW-ADI5 method still remains (Table 4) and that the adaptive procedure for SW-ADI
does not show second-order accuracy, Table 5. This reflects a degeneracy of accuracy ir
computation of second derivatives on a nonuniform mesh by a cubic spline. Fortunate
a quintic spline interpolation on such a nonuniform grid still gives second-order accurac
Figure 4 gives a comparison among numerical solutions of SW-ADI5 and SW-ADI3 an
an exact solution fok-cut aty = 2.5. It is clear from Fig. 4 that there exists an obvious
difference between the approximate solution of SW-ADI3 and the exact solution.

We now consider the equation with mixed space derivative

au 92u 92u 92u
S AT +2B—— +C

— +f withA>0,C>0,B?< AC,
ot X2 axay ay?2

where the exact solution is (6.2), and

au 9%u 9%u 3%u
fx,t) = —— (A— +2B—— +C— ).
ot ax2 axay ay?

Numerical experiment indicates that the approximation results agree well with the exe

solution with the second-order accuracy (see Table 6).

6.3. Numerical Results for Reaction—-Diffusion Equations

Finally, we consider Eq. (2.1) with source term (2.2), where the parametets 2,
B = 20,«a = 0.8, and the computational domain is%, 15] x [0, 10]. The numerical

TABLE 3
Numerical Results for Second-Order Runge—Kutta Method

Wavelet level
Method s Jy) Final timet  Max_error (log)  Order of accuracy
R-K2 2,1) 0.2 —2.4638
R-K2 (3,2 0.2 —3.0858 2.0661

R-K2 (4,3) 0.2 —3.8481 2.5326
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FIG. 3. A uniform mesh point distribution.

results of wavelet level (3, 2) with SW-ADI5 are obtained, where the source term is treat
by a Strang-type splitting scheme [13] with a fourth-order Runge—Kutta scheme. Figures &
give the nonuniform and adaptive meshes of the wavelet level (3, 2) at the five times 0, 2, 4
and 8 with the control parameter= 10~4. Figures 10—14 are contours of the temperature a
differenttimes{ =0, 2, 4, 6, and 8). Witly = 2.5 given, arx-cut result of the temperature
solution for times 0, 1, 2 .., 8 is shown in Fig. 15. All results coincide with the results
obtained by using the second-order Runge—Kutta method (see Fig. 16). According to
numerical experiment with the same computational conditions, the computational tin
taken by the second-order Runge—Kutta method is about three times as much as the 1
taken by the present SW-ADI5 method.

7. CONCLUSIONS

In this paper, we have demonstrated an efficient second-order accurate SW-ADI mett
for the solution of time-dependent boundary value problems of PDEs. We are extending
same approach to the full Navier—Stokes equations by combining the wavelet methods
the Beam—Warming splitting in the two-dimensional cases [14].

In some cases, if higher than second-order time accuracy is needed, the SW-ADI schel
could be used as a preconditioner in conjunction with a higher order time integrator, such
Adams—Moulton methods. Another relevant research topic will be to combine the SW-AL
and domain decomposition to form a wavelet—element method which will be applicable f
more general domains. We will address these issues in later papers.

TABLE 4
Numerical Results for SW-ADI5 Method with Adaptive Procedure

Wavelet level
Method (I, Jy) Final timet  Maxerror (log)  Order of accuracy
SW-ADI5 (2,12) 0.2 —2.78562
SW-ADI5 3,2 0.2 —3.35540 1.8923

SW-ADI5 @, 3) 0.2 —3.93674 1.9312
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TABLE 5
Numerical Results for SW-ADI3 Method with Adaptive Procedure

Wavelet level
Method (e, Jy) Final timet  Maxerror (log)  Order of accuracy
SW-ADI3 (2,1) 0.2 —0.581356
SW-ADI3 (3,2) 0.2 —0.719687 0.4595
SW-ADI3 4,3 0.2 —1.135147 1.3801

APPENDIX: DERIVATION OF DERIVATIVE MATRICES
WITH A QUINTIC SPLINE INTERPOLATION

Letty < 0 < --- < Th_1 < T, denote nodes, whele,, t3} and{r,_», thn_1} denote
not-a-knot. Assume tha®, (x), x e[z, ti11], 1 < i < n — 1 are piecewise fifth-order
polynomials. Given datg;, 1 <i < n, find a quintic spline such that

P () =g, 1<ic<n, (A.1)

PY1)=P% ()., 2<i<n-2 (A.2)

and at{ry, r3} and{z,_2, Tn_1}

P () = P32 (12)

Ps” (t3) = P> (13)
Prﬁ)g(fn—Z) = Prsg_))z(fn—z)

P, (th 1) = P (tn1),

(A.3)

0.9
0.8
0.7

SW-ADI3 (circle)
SW-ADIS (square)
R-K (mmangle)

&5

0.6
0.5
0.4
0.3
0.2
0.1

FIG. 4. Solutionu(x, y, t) atx-cut (comparisons).
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TABLE 6
Numerical Results for SW-ADI5 Method
Wavelet level
Method (., Jy) Finaltimet  Maxerror (log)  Order of accuracy
SW-ADI5 (2,1) 0.2 —-1.5671
SW-ADI5 (3,2 0.2 —2.1519 1.9423
SW-ADI5 4, 3) 0.2 —2.7594 2.0180

where (A.2) means that the piecewise polynomRl&<), 1 < i < n — 1, are continuous
up to the fourth derivatives and (A.3) indicates continuous conditions of extra derivative
the not-a-knots. We consider the unknown as

§=P(@), 1l<i<n Ti=P'(m), 1<iz<n (A.4)
By the Newton formula, we have

P(X) = P(n)+ X —t)[n, 5]P + (X — w)[5, 5, @, 1P
+ X — )5, 6, 6]P 4+ X — w)¥[w, 5. 5, t14] P,

+ (X = 1)3(X — tip0)[T, T, T, Tipa, Tipa] P

+ (X — 13X — 40T, T T, Tign, T Tl P .
where
[4]R = R,
[, ti+a] R = w7
and
P () — R(n)

[‘L’i,‘L’i]P. = lim —=.

T T — T

> 10 THENNEETNE
8
6
4
2 :
05 s 10 s

FIG. 5. Nonuniform and adaptive mesh point distributions at 0.
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FIG. 6. Nonuniform and adaptive mesh point distributions at 2.

S Y kA N O

2314 points

FIG. 7. Nonuniform and adaptive mesh point distributions at 4.
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FIG. 8. Nonuniform and adaptive mesh point distributions at 6.
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2108 points
Hu NN R NN

FIG. 9. Nonuniform and adaptive mesh point distributions at 8.

FIG. 10. Contour of temperature &t= 0.

)

FIG. 11. Contour of temperature at= 2.
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)

FIG. 12. Contour of temperature at= 4

[

FIG. 13. Contour of temperature &t= 6

|

FIG. 14. Contour of temperature &at= 8
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08 [~
06 |-
04 |-

02 |-

FIG. 15. Temperature ok-cutaty = 2.5andt =0,1,...,8.

Assume that

P(X) =Csi +Cai(X — 1) + Cai(X — 1)* + Csi (X — 1)

+Cs (x — 1)* + Co (x — 70)*; (A.6)
then
Ci =PR@) =4,
Ca = P/ (n),
1 AMdaa-a 5-5-8-0-0-0-0-O
[ Y: Mass Fraction
08 Wavelet ADI (circle)
i R-K(solid line)
06
04
i T: Temperature
i SW-ADI (triangle)
02 R-K(dash-dot)
0 (M 5-0-6-D-00E0000500ReMLoOC0d0-0kg :
-5 0 5 10 15

X

FIG. 16. Comparison between the SW-ADI and the second-order Runge—Kutta methed®0.5, 1, 1.5.
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Ca 1P(Tl)—1T|,

C4i 3|PIW( )— {6[,,,]P+6(Ti+1—fi)[,,,,]P+6(‘L’i+1—1’i)2[,,,,,]P}

1
= A2 {10g —6S — 3AG T + AT — 4944},
i

%p-ﬁ Wuo——ﬁ4x3xaﬂ,JP+4&u—anH,H]m

1
= AL3 {7S41+8S —2A7Tij1 + 3A7 Ty — 150},
i

and
1 1
C6i = §P|(5)(T|) == 5{5'[, LR ]P}

1
= P{Afi-ri-H_ ATy —35,1—35 +6g}.

Now we derive the equations among unknowns by means of continuity of the derivati
at the internal knots; i.e.,

P @) =P%@), PYU@m) =P%m), 3<izn-2 (A7)
From the definition (A.6), we obtain directly from the first part of (A.7)
P (n) = 3C4;, (A.8a)
P(31(T|) =3ICs-1+4-3-2C5_1(ti — Ti—1) +5-4-3Cqi_1(ti — 1i_1)>. (A.8b)
Let (A.8a) equal (A.8b); we have
C4 = C4i—1+4Cs_1(ti — 7i-1) + 10Cqs_1(ti — 7i-1)°,
that is,
1
A2 {10g — 6S — 3A7Ti + At Tiy1 — 4544}
[
1
= ——{10gi-1 — 651 — 3A7 1 Ti1 + A7 1Ty — 45}
A‘Ci—l

4
+ 5 (7S +85 1 - 2A1 4T +8A7 4Ty — 15Gi 1t} Ay

{AT_1Ti — Ati_1Tio1 — 35 —3S_1 + 601} At?,
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which gives

4 6 6 4
- )s - T
A‘Kz S 1 <A‘Ki2_1 qu) S A'L'iz S+1 + i—1

3 3 1 10gi -1 109|
— T ——T = A.9
(Ari_l + Ar,) T+ AT ! Ariz_l At (A.9)

ATi_g

Similarly, we have, by using the second part of formula (A.7),

(4) V(1) = 41Cy;, (AlOa)

P“ (1) = 4!Cs5_1+5-4-3-2Cs_1(ti — Ti_1). (A.10b)

Let (A.10a) equal (A.10b); we have

Cs = Csi—1+ 5Cq—1(ti — 7i-1);
that is,

7§41 +89 — 2A7Tip1 + 3A7 Ty — 15¢g;
AT3

7S +85_1—2A7 1Ty +3A71Ti1 — 15 1
- ATS

cATTi — At1Tiog —3§ — 351+ 601

which gives

3 3 2 1591 159
= T - 2T .
* <Ari2_1 T A ) NN PN

(A.11)

Finally, we obtain the equations, by using conditions (A.3),

3 3 3 1 1 1 1
-— -— — T T T:
481 (Atl Arf)sz Arfss—i_Arla [A 3+A‘L'2:| 2+A12 *
601 69

= at knott,,
At} Al’z

(A.12)

3 3 3 1 1 1 1
— — = - — —h—|——+——= T3+ —T.
Ar§82+ (Arf Arsf‘) = Ar§&+ ATS 2 <A123 + Até”) 3t ATS N
601 602

= at knotrs,
Aty Ar3

(A.13)
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3 3 3
—Afr?738173+ <—Ar,‘]‘ . )31 2— —F— Afn, S-1+

——Th_
Arn 2 ArnS 3 n-3
! + L Tho2 + 1 T,
ATE . A2, n-2 AT, n-1
60n_ 60n_
= gn43 - g”42 at knotz,_o, (A.14)
Aty 3 Aty
3 3 3 3 1
ot |—F——F | S — + Too
AT-'r?fzs] ? (Afﬁz ATr?l) St Afrilsn N ?
! + 1 Tho1 + L —T,
At,?_z A7:n3_1 n-t Arﬁ 1 :
60n_ 60n_
= g”4 z _ 9”4 ! atknotr, ;. (A.15)
Aty , Aty g
In summary, we have then2equations for & unknowns{S, S, ..., S} and {Ty,

-7TI"I}1

3 3 3 3 1 1 1 1
= B I S S I R (NI I ¢
ArfS'L+(Arf Até‘)sz Atg%-’_Atf’ ! <Atl3+At§) 2+A123 s

= at knotro, (A.16a)
Arl Arz

3 3 3 3 1 1 1 1
S . LY I A (L L L
Arfsz+ (Arﬁ' A‘L'3> = Aty 3=t ATS 2 (AIS * Afg’) 3t Ad

= at knotrs; (A.16b)
A‘L’Z Ar3

4 6 6
Ti_
Aflals 1+<A|21 A'L'i2>s A ZS+1+ - i—1
3 3 1
. IR - Bl
(Anl An) e
10g, 1 .
Og.2 105 atknotsz, 2<i <n-—1, (A.17a)
AT?,  AT?
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7 8 8
_ — Ti_
Afisls L (Afisl - A i3> St A |3S+l " Afizl Il
3 3 2
= g —
+<Ari2_1+Ar ) ' Az
15¢g;_ 15q; .
= 59'3 Ly 59; atknotr, 2<i<n-—1; (A.17b)
A‘Ci—l Afi
3 3 3 1
Th—
AT:?—S% 3t <AT§—3 At, 2) 52 A #_231 1 AT:?—S e
1 1
- T2+ Toe
(Afr?—a A’fr?—z) " r?—z i
60n_ 60n_
gn4 $_ 9”4 2 atknotry_o, (A.18a)

3 3 3 1
S1—2+<—4 >Snl N S+ 3 Th-2

A""n 2 A""n 1 Th-1 ATn—2

LI © A |
A3, T AR, ) " A"

_ 6gnfz . 69n71
Aty , Aty

at knotr,_1. (A.18Db)

Rearranging the order of the above equations; i.e.,

knot 2—(A.163)
knot 2—(A.173)
knot 3—(A.16h)
knot 3—(A.173)
knot 4—(A.173)
knot n-1—(A.173)
knot 2—(A.17h)
knot 3—(A.17h)
knot n-3—(A.17h)
knot n-2—(A.17h)
knot n-2—(A.183)
knot n-1—(A.17h)
knot n-1—(A.18b)

we have the matrix representations of (A.16)—(A.18)

{gi iﬂ {?] - Lﬂ : (A.19)
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A=

and

where

and

SZ[S_I.’ 827"'
c=[cCo...,Cn]" = Mcg,

g=1[01,0,...
r_6
Arf
10
Arlz
M¢ =
M 15
Atf
My =

Arn2—3 n
1 _ 1 1
Arr?_a Arg_s + Arg_z
__2 3
a2, ar2
A’{z B ( A’r?
T T
aS‘I] El T=[T17T27"'5Tn]a
T
d = [dlv d2,...,dn] = Mdga
T
k) gn] )
__6
A‘L’;
10 0
A1:22
6 _ 6
Arﬁ1 Arg,1
10 10
2 2
Aty Aty
10 10
2 2
Aty Aty
[} [ )
0 10 10
A2, A2,
10 10
A2,  ATZ,
_ 15
Arz3
15 15
Arz3 Ar33 0
[ ] L)
6 15
At|1274 Arn{3
15 15
Arn273 Arriz
6 6
INZ N 2
0 15 15
Arriz Al'nz,l
16 6
2 2
A7"n—2 ATn—l _
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Introducing two transform matricd®; andR; as

(1 —BA [ 0
il R B BV

we have, by multiplying (A.19) byr; and R, respectively,

s=D{g, (A.20a)
where
DY = [A1— B,AIBy] ‘M, M= Mc — BoA; TMg,
and
T =Dyg, (A.20b)
where

_ -1 .~ ~ _
DY = [A; — BiA['By] Mg, Mg = Mg — B1AT M.

The eigenvalue plots of terank-Nicolsormethod | — (r/2) DS1[1 + (r/2) D] for
both third and fifth spline interpolations are given in Figs. 17-18. The schemes are stak
since all real parts of eigenvalues are less than zero and the minimum is larger than mi
one.

S
=
L L B NS B R B

J
0.05 0.1

Im

—_—
S amee o

FIG. 17. Real partvs image part of eigenvalues of the C-N matrix [r /2) DS][ | + (r/2) D] for a cubic
spline.
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FIG.18. Real partvsimage part of eigenvalues of the C-N matrix [r /2) D[ | + (r /2) D{’] for a quintic
line.
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